Processing math: 100%

Taylor Formula

在此篇文章中有一些泰勒展开式,主要用在极限求法上,可以稍微记忆

ex=n=0xnn!=1+x+x22!+x33!++xnn!+

ln(1+x)=n=1(1)n1xnn=xx22+x33x44++(1)n1xnn+(1<x1)

sinx=k=0(1)kx2k+1(2k+1)!=xx33!+x55!x77!++(1)kx2k+1(2k+1)!+

cosx=k=0(1)kx2k(2k)!=1x22!+x44!x66!++(1)kx2k(2k)!+

tanx=x+13x3+215x5+(|x|<π2)

cotx=1xx3x345(0<|x|<π)

secx=1+x22+5x424+61x6720+=n=0E2n(2n)!x2n(|x|<π2)

cscx=1x+x6+7x3360+31x515120+(0<|x|<π)

(1+x)α=n=0α(α1)(αn+1)n!xn=1+αx+α(α1)2!x2++α(α1)(αn+1)n!xn+(收敛区间依α而定)

arctanx=n=0(1)n2n+1x2n+1=xx33+x55x77++(1)n2n+1x2n+1+(|x|<1)

arcsinx=n=0(2n)!4n(n!)2(2n+1)x2n+1=x+16x3+340x5++(2n)!4n(n!)2(2n+1)x2n+1+(|x|<1)

arccosx=π2n=0(2n)!(2n+1)4n(n!)2x2n+1=π2xx363x540(1x1)

sinhx=n=0x2n+1(2n+1)!=x+x33!+x55!++x2n+1(2n+1)!+

coshx=n=0x2n(2n)!=1+x22!+x44!++x2n(2n)!+

erf(x)=2π(xx33+x510x742+)

Si(x)=xx33×3!+x55×5!x77×7!+

Ci(x)=γ+lnxx22×2!+x44×4!x66×6!+