在此篇文章中主要写的是一些求导公式,几乎涵盖了大部分使用场景
这里是常数函数的求导
若 \(y = C\)(\(C\)为常数),则 \(y^{\prime}=0\),代码如下: \[ y = C \Rightarrow y^{\prime}=\frac{dy}{dx}=0 \]这里是幂函数的求导
若 \(y = x^{n}\)(\(n\)为实数),则 \(y^{\prime}=nx^{n - 1}\), \[ y = x^{n} \Rightarrow y^{\prime}=\frac{dy}{dx}=nx^{n - 1} \]这里是指数函数的求导
1. 若 \(y = a^{x}\)(\(a>0,a\neq1\)),则 \(y^{\prime}=a^{x}\ln a\), \[ y = a^{x} \Rightarrow y^{\prime}=\frac{dy}{dx}=a^{x}\ln a \] 2. 特别地,当 \(y = e^{x}\)时, \(y^{\prime}=e^{x}\), \[ y = e^{x} \Rightarrow y^{\prime}=\frac{dy}{dx}=e^{x} \]这里是对数函数的求导
1. 若 \(y=\log_{a}x\)(\(a>0,a\neq1,x>0\)),则 \(y^{\prime}=\frac{1}{x\ln a}\), \[ y=\log_{a}x \Rightarrow y^{\prime}=\frac{dy}{dx}=\frac{1}{x\ln a} \] 2. 当 \(y = \ln x\)(即 \(y=\log_{e}x\))时, \(y^{\prime}=\frac{1}{x}\), \[ y = \ln x \Rightarrow y^{\prime}=\frac{dy}{dx}=\frac{1}{x} \]这里是三角函数的求导
1. 若 \(y=\sin x\),则 \(y^{\prime}=\cos x\), \[ y=\sin x \Rightarrow y^{\prime}=\frac{dy}{dx}=\cos x \] 2. 若 \(y=\cos x\),则 \(y^{\prime}=-\sin x\), \[ y=\cos x \Rightarrow y^{\prime}=\frac{dy}{dx}=-\sin x \] 3. 若 \(y=\tan x=\frac{\sin x}{\cos x}\),则 \(y^{\prime}=\sec^{2}x=\frac{1}{\cos^{2}x}\), \[ y=\tan x \Rightarrow y^{\prime}=\frac{dy}{dx}=\frac{1}{\cos^{2}x} \] 4. 若 \(y=\cot x=\frac{\cos x}{\sin x}\),则 \(y^{\prime}=-\csc^{2}x=-\frac{1}{\sin^{2}x}\), \[ y=\cot x \Rightarrow y^{\prime}=\frac{dy}{dx}=-\frac{1}{\sin^{2}x} \] 5. 若 \(y=\sec x=\frac{1}{\cos x}\),则 \(y^{\prime}=\sec x\tan x\), \[ y=\sec x \Rightarrow y^{\prime}=\frac{dy}{dx}=\sec x\tan x \] 6. 若 \(y=\csc x=\frac{1}{\sin x}\),则 \(y^{\prime}=-\csc x\cot x\), \[ y=\csc x \Rightarrow y^{\prime}=\frac{dy}{dx}=-\csc x\cot x \]这里是反三角函数的求导
1. 若 \(y = \arcsin x\),则 \(y^{\prime}=\frac{1}{\sqrt{1 - x^{2}}}\), \[ y=\arcsin x \Rightarrow y^{\prime}=\frac{dy}{dx}=\frac{1}{\sqrt{1 - x^{2}}} \] 2. 若 \(y = \arccos x\),则 \(y^{\prime}=-\frac{1}{\sqrt{1 - x^{2}}}\), \[ y=\arccos x \Rightarrow y^{\prime}=\frac{dy}{dx}=-\frac{1}{\sqrt{1 - x^{2}}} \] 3. 若 \(y=\arctan x\),则 \(y^{\prime}=\frac{1}{1 + x^{2}}\), \[ y=\arctan x \Rightarrow y^{\prime}=\frac{dy}{dx}=\frac{1}{1 + x^{2}} \] 4. 若 \(y=\text{arccot} x\),则 \(y^{\prime}=-\frac{1}{1 + x^{2}}\), \[ y=\text{arccot} x \Rightarrow y^{\prime}=\frac{dy}{dx}=-\frac{1}{1 + x^{2}} \]以下是双曲函数部分
双曲正弦函数: 定义: \[ \sinh x = \frac{e^{x} - e^{-x}}{2} \] \[ (\sinh x)^\prime = \frac{d}{dx}\left(\frac{e^{x} - e^{-x}}{2}\right) = \frac{e^{x} + e^{-x}}{2} = \cosh x \] 双曲余弦函数: 定义: \[ \cosh x = \frac{e^{x} + e^{-x}}{2} \] \[ (\cosh x)^\prime = \frac{d}{dx}\left(\frac{e^{x} + e^{-x}}{2}\right) = \frac{e^{x} - e^{-x}}{2} = \sinh x \] 双曲正切函数: 定义: \[ \tanh x = \frac{\sinh x}{\cosh x} = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} \] \[ (\tanh x)^\prime = \frac{\cosh x \cdot \cosh x - \sinh x \cdot \sinh x}{\cosh^{2}x} = \frac{1}{\cosh^{2}x} = \text{sech}^{2}x \] 双曲余切函数: 定义: \[ \coth x = \frac{\cosh x}{\sinh x} = \frac{e^{x} + e^{-x}}{e^{x} - e^{-x}} \quad (x \neq 0) \] \[ (\coth x)^\prime = \frac{\sinh x \cdot \sinh x - \cosh x \cdot \cosh x}{\sinh^{2}x} = -\frac{1}{\sinh^{2}x} = -\text{csch}^{2}x \quad (x \neq 0) \] 双曲正割函数: 定义: \[ \text{sech} x = \frac{1}{\cosh x} \] \[ (\text{sech} x)^\prime = -\frac{\sinh x}{\cosh^{2}x} = -\text{sech} x \cdot \tanh x \] 双曲余割函数: 定义: \[ \text{csch} x = \frac{1}{\sinh x} \quad (x \neq 0) \] \[ (\text{csch} x)^\prime = -\frac{\cosh x}{\sinh^{2}x} = -\text{csch} x \cdot \coth x \quad (x \neq 0) \]以及最后的复合函数求导公式
则 \(y^{\prime}=f^{\prime}(u)g^{\prime}(x)\), \[ \frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx} \text{ 即 } y^{\prime}=f^{\prime}(u)g^{\prime}(x) \]